Identifying Top-Performing Public High Schools for the “Best High Schools” Rankings

Analytical Methodology and Technical Appendices

Prepared for U.S. News & World Report
by RTI International
April 2017
Acknowledgments

This report was produced for U.S. News & World Report (U.S. News) by RTI International. The authors—Ben Dalton, Elisabeth Hensley, Erich Lauff, Marcinda Mason, Taylor Richards, and Colleen Spagnardi—would like to acknowledge the many people and organizations that made these rankings possible.

Primarily, we would like to express gratitude to officials and staff at state education agencies who have helped provide the data necessary for the analysis and answered questions about the data. In particular, we wish to thank staff in Arkansas, Arizona, Idaho, Kansas, Louisiana, Nebraska, North Carolina, South Dakota, and Utah for their rapid turnaround of our data requests and/or responses to our questions. Without states’ express help and the considerable work that goes into making such data available generally, these rankings would not be possible.

We would also like to thank the researchers at the American Institutes for Research (AIR) and their predecessors for developing the original methodology for the rankings. This document and the rankings methodology were originally derived from AIR’s 2014 analytical methodology and technical appendices.

For questions about the 2017 “Best High Schools” rankings, please contact

Robert J. Morse
Chief Data Strategist
U.S. News & World Report
1050 Thomas Jefferson St.
NW Washington, DC 20007
Rmorse@usnews.com
Analytical Methodology
The “Best High Schools” Method

U.S. News & World Report (U.S. News) publishes the “Best High Schools” rankings to identify the top-performing public high schools in the United States. These rankings are based on four aspects of school performance: (1) the performance of all students on state assessments in reading and mathematics; (2) the performance of disadvantaged student subgroups—defined as Black/African-American students, Hispanic/Latino students, and students who are eligible for free or reduced-price lunch or who are economically disadvantaged as determined by the state—on these assessments; (3) the school’s graduation rate; and (4) the degree to which high schools prepare students for college based on the numbers of students taking and passing exams associated with college-level courses.

This 2017 version of the rankings, using data from the 2014–15 school year, is based on the previous year’s documentation and updated based on adjustments to the methodology. This year’s rankings incorporates a change to the graduation rate threshold used in Step 3. Schools are only allowed to proceed to Step 4 (the final rankings step) if their graduation rate was 75% or above. Last year’s graduation rate threshold was 68%—a low hurdle that did not adequately identify the nation’s best high schools.

In addition, this year’s rankings do not include results on International Baccalaureate (IB) exams. The International Baccalaureate Organization (IBO) was unable to supply *U.S. News* with IB data as in previous years.

More information and a list of the top-performing high schools are available on the “Best High Schools” website (www.usnews.com/education/best-high-schools).

Method Overview

The technical methods used to create the rankings were designed to:

- Identify high schools that have succeeded in serving their students—including those from disadvantaged student subgroups—as measured by academic performance on state assessments in reading and mathematics.
- Evaluate how well high schools have prepared their students for college, as measured by graduation rates and participation in and performance on Advanced Placement (AP) examinations.

A four-step process was used to generate the “Best High Schools” rankings:

- **Step 1:** Identify high schools that performed better than expected on state accountability assessments, given their population of economically disadvantaged students; or were in the top 10% of the state’s distribution of performance.
- **Step 2:** Identify high schools whose disadvantaged students performed better than the state average for disadvantaged students.
- **Step 3:** Identify high schools that met a basic criterion for graduation rates.
- **Step 4:** Identify high schools that performed best in providing students with access to challenging college-level coursework.

Step 1 and Step 2 of the method were based on state-by-state analyses designed to evaluate high schools on the performance of their students on state assessments. Step 1 identified high schools...
within each state that performed better on state reading and mathematics assessments than their poverty level would lead one to expect. Step 2 identified high schools with disadvantaged student subgroups that performed better than the state average for these subgroups. Step 3 identified high schools that met a basic graduation rate threshold (75% or above). High schools that passed these three steps were considered at least bronze-medal high schools and were analyzed further. High schools that did not pass Step 1, Step 2, and Step 3 were not eligible for a medal or ranking.

High schools that met the criteria for Step 1, Step 2, and Step 3 then proceeded to Step 4, which examined the extent to which these high schools prepared their students for college, as determined by participation in and performance on AP examinations—computed as a college readiness index or CRI. High schools with a CRI at or above the median CRI for all high schools in the country were eligible for silver or gold medals. The high schools with the top 500 CRI scores received a gold medal, while all other high schools above the national median CRI received a silver medal. In cases where schools tied on CRI scores, a set of tiebreakers based on AP examinations were used to determine ranking. (For more information on tiebreakers, see Substep 4.5 of this report.) To summarize:

- **Bronze-Medal High Schools**: Passed Step 1, Step 2, and Step 3 and had a CRI below the national median or did not have a CRI value.
- **Silver-Medal High Schools**: Passed Step 1, Step 2, and Step 3 and had a CRI at or above the national median but did not rank in the top 500 for CRI among high schools that passed Step 1, Step 2, and Step 3.
- **Gold-Medal High Schools**: Passed Step 1, Step 2, and Step 3, and had a CRI at or above the median, and ranked in the top 500 for CRI among high schools that passed Step 1, Step 2, and Step 3.

All other schools were categorized as “not ranked.” Exhibit 1 illustrates the three-step process for ranking the high schools.

Exhibit 1. High School Performance Ranking System for Step 1, Step 2, Step 3, and Step 4

<table>
<thead>
<tr>
<th>Step 1 State Assessment Results for All Students</th>
<th>Step 2 State Assessment Results for Disadvantaged Student Subgroups</th>
<th>Step 3 High School Graduation Rate</th>
<th>Step 4, Part 1 College Readiness Index (CRI)</th>
<th>Step 4, Part 2 College Readiness Index (CRI) Top 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>All High Schools</td>
<td>Performed Better Than Expected</td>
<td>At or Above 75%</td>
<td>At or Above Median</td>
<td>Top 500: Gold Medal</td>
</tr>
<tr>
<td>Did Not Perform Better Than Expected: Not Ranked</td>
<td>Did Not Perform Better Than Expected: Not Ranked</td>
<td>Below 75%: Not Ranked</td>
<td>Below Median: Bronze Medal</td>
<td>At or Above Median, Not Top 500: Silver Medal</td>
</tr>
</tbody>
</table>
Data Sources

The data from the 2014–15 school year that were used to produce these rankings came from the following sources:

- School-level state assessment results were retrieved from state education agency websites or directly from state education agencies.
- The universe of high schools and associated demographic data were retrieved from the Common Core of Data (CCD) (http://nces.ed.gov/ccd) at the U.S. Department of Education’s National Center for Education Statistics (NCES). Only public high schools (including charter high schools) were included in the analysis.
- AP examination results for the 2015 cohort were provided by the College Board (https://www.collegeboard.org). As noted earlier, IB examination results were not included in this year’s rankings.
- It should be noted that, where possible, U.S. News uses state assessment results which reflect the annual performance of schools, and does not include cumulative or “banked” test scores that follow the student from one school to another or one grade to another. This may differ from what states report to the federal government for accountability purposes or on their own websites or in state reports.

Number of Schools in Different Steps of the Analysis

Although the data requested from states for the purpose of ranking high schools did not include individual student-level achievement data, many states had data-suppression rules based on the Family Educational Rights and Privacy Act1 or their own restrictions that limited data availability for some schools. In the 2014–15 school year, according to the CCD, there were 28,496 public schools serving at least one grade in grades 9–12 in the United States. To be eligible for the 2017 “Best High Schools” rankings, high schools were required to meet the following criteria:

- Their status was not reported as closed or temporarily closed in the CCD; and
- Their lowest grade is at least grade 9 or their highest grade is grade 12. This excludes elementary, middle, and junior high schools but includes schools with both a grade 12 and one or more less-than-high school grades (e.g., grades 7–12); and
- They have at least 15 students in one of grades 9–12; or, if missing grade-level enrollment counts, the number tested in mathematics or reading is at least 15; or, if missing grade-level enrollment and numbers tested, the total enrollment is at least 15. These rules ensure that schools meet minimum size requirements while maximizing data availability.

There were 22,411 schools that met the status and grade-level criterion, and 20,487 schools that met the status, grade-level, and enrollment criteria. These schools were eligible for bronze medals. Additional criteria were required for step 4, part 2: schools were only eligible for a silver or gold

medal if they had at least 15 students in grade 12 and at least 10 students taking one or more AP exams. In addition to these criteria, many states had state-specific suppression rules (e.g., rules guiding the minimum number of reportable students in a subgroup) to protect the identities of their students and thus did not report complete assessment data. As a result of suppression or missing data, 19,332 high schools were eligible to be included in Step 1 (had a calculated performance index value). During the analysis, 7,280 high schools passed Step 1. Of these, 927 high schools did not pass Step 2, leaving 6,353 to be considered for Step 3. Of these, 312 high schools did not pass step 3, leaving 6,041 to be considered for Step 4. A total of 3,876 high schools that passed Step 1, Step 2, and Step 3 also had a qualifying CRI. Exhibit 2 presents the number of high schools at each step of the analysis.

Exhibit 2. Number of Public High Schools in Analysis Sample

<table>
<thead>
<tr>
<th>Analysis Sample</th>
<th>Number of High Schools</th>
<th>Reasons for Decrease in the Number of High Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total open public schools serving grade 9 as their lowest or grade 12 as their highest grade</td>
<td>22,411</td>
<td>—</td>
</tr>
<tr>
<td>Schools considered for analysis</td>
<td>20,487</td>
<td>1,924 schools did not meet size requirements.</td>
</tr>
<tr>
<td>Schools considered during Step 1</td>
<td>19,322</td>
<td>1,155 high schools did not have enough data to calculate a performance index.</td>
</tr>
<tr>
<td>Schools considered during Step 2</td>
<td>7,280</td>
<td>12,052 high schools did not pass Step 1.</td>
</tr>
<tr>
<td>Schools considered during Step 3</td>
<td>6,353</td>
<td>927 high schools did not pass Step 2.</td>
</tr>
<tr>
<td>Schools considered during Step 4</td>
<td>6,041</td>
<td>312 high schools did not pass Step 3.</td>
</tr>
<tr>
<td>Schools considered for gold and silver medals</td>
<td>2,609</td>
<td>3,432 high schools that passed Step 1, Step 2, and Step 3 did not administer AP examinations, had fewer than 15 grade 12 students, or had fewer than 10 students who took AP examinations.</td>
</tr>
</tbody>
</table>

— Not applicable.
Step-by-Step Process
Details: Indicators and Criteria

Exhibit 3 provides an overview of each step of the process. Following are more detailed explanations, along with descriptions of the different metrics used to calculate the rankings.

Exhibit 3. Detailed Breakdown of the Technical Approach for Step 1, Step 2, Step 3, and Step 4

Step 1
Identify high schools that performed better than expected on state accountability assessments.

- Substep 1.1 Calculate the performance index for each high school.
- Substep 1.2 Calculate the percentage of economically disadvantaged students.
- Substep 1.3 Regress the performance index on the percentage of economically disadvantaged students.
- Substep 1.4 Use residuals to establish the performance zone.
- Substep 1.5 Create the risk-adjusted performance index.
- Substep 1.6 Select high schools that surpass the performance threshold or are in the top 10% of their state’s PI distribution, and proceed to Step 2.

Step 2
Identify high schools that performed better than the state average for their least advantaged students.

- Substep 2.1 Calculate the combined reading and mathematics proficiency (RaMP) rate for disadvantaged student subgroups for each high school.
- Substep 2.2 Calculate the state average RaMP rate for disadvantaged student subgroups.
- Substep 2.3 Calculate the proficiency gap differential for disadvantaged student subgroups.
- Substep 2.4 Select high schools that do as well as or better than the state average, and proceed to Step 3.

Step 3
Identify high schools with a school graduation rate of 75% or greater.

- Substep 3.1 Select high schools whose rounded graduation rate is 75% or greater, and proceed to step 4.

Step 4
Identify high schools that performed best in providing students with access to challenging college-level coursework.

- Substep 4.1 Calculate student participation in AP examinations for each high school.
- Substep 4.2 Calculate student performance on AP examinations for each high school.
- Substep 4.3 Calculate the college readiness index (CRI) for each high school.
- Substep 4.4 Calculate the national median CRI to select high schools to be ranked.
- Substep 4.5 Rank high schools and assign medals.
Step 1: Identify High Schools That Performed Better Than Expected on State Accountability Assessments

Step 1 of the “Best High Schools” method identified high schools that performed better on state reading and mathematics assessments than would be expected given the proportion of students identified as economically disadvantaged. To pass Step 1, high schools needed to have higher achievement than high schools with similar proportions of economically disadvantaged students, or to perform in the top 10% of their state’s achievement distribution (and no lower than the bottom 10% of their state’s achievement distribution).

The relationship between academic achievement and socioeconomic status has been studied extensively, and the literature indicates a reasonably consistent moderate-to-large relationship between the two (e.g., Caldas & Bankston, 1997; Crosnoe, 2009; Crosnoe & Schneider, 2010; Rumberger & Palardy, 2005; Sirin, 2005; White, 1982). For this reason, Step 1 of the rankings aimed to identify high schools that performed above expectations, controlling for the proportion of economically disadvantaged students. Correlation does not establish causality, and therefore it cannot be stated that economically disadvantaged students should have lower expectations placed on them. Rather, this relationship simply indicates that for most (but not all) high schools, the challenge of educating disadvantaged students has not yet been overcome. (In the analysis, the relationship between school poverty and school average achievement was negative in all states, though the strength of the relationship varied from state to state).

Substep 1.1: Calculate the Performance Index for Each High School

A performance index (PI) was computed for each high school that was based on student performance on 2014–15 state reading and mathematics assessments. The performance index is designed not only to reward high schools for the number of students at the proficient level but also to assign more weight for students who are performing at levels above the proficient benchmark (as determined by the state). The index valued proficient as 1.0 point, with one level above proficient assigned 1.5 points and two levels above proficient assigned 2.0 points. One level below proficient—considered approaching proficient in this method—was assigned a value of 0.5 points. No points were awarded for performance at two or three levels below proficient.

The high school’s performance index was calculated by multiplying the percentage of students scoring at each performance level (e.g., proficient, above proficient) by the index value for that level (e.g., 1.0, 1.5). For example, if a high school participated in an examination with four performance categories—below proficient, approaching proficient, proficient, and above proficient—and all students scored above proficient, the high school would receive a performance index of 150 because 100 percent of students fell in the above proficient category, which is given a weight of 1.5. Exhibit 4 presents information for calculating the performance index for a sample high school with four proficiency levels.

2 In cases where states assessed students on reading as well as English/language arts, the reading assessment was used. If no reading assessment was reported, English/language arts results were analyzed.

3 When only one level was reported below proficient, that level received a value of 0.
Exhibit 4. Example of Calculating the Performance Index

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Below Proficient (Weight = 0)</th>
<th>Approaching Proficient (Weight = 0.5)</th>
<th>Proficient (Weight = 1)</th>
<th>Above Proficient (Weight = 1.5)</th>
<th>Total Test Takers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>5%</td>
<td>22%</td>
<td>58%</td>
<td>15%</td>
<td>120</td>
</tr>
<tr>
<td>Mathematics</td>
<td>7%</td>
<td>15%</td>
<td>60%</td>
<td>18%</td>
<td>145</td>
</tr>
</tbody>
</table>

The performance index for this high school with these proficiency levels would be computed by the following formula:

\[
PI = \frac{\left(\frac{(22*.5)+(58*1)+(15*1.5)}{120}+\left(\frac{(15*.5)+(60*1)+(18*1.5)}{145}\right)\right)}{(120+145)} = 93.14
\]

The state assessment data provided for these analyses were provided or available in a variety of formats and disaggregations, depending on the state. In some states, overall numbers tested and percent reaching each proficiency level were directly provided, and the performance index could be calculated immediately. In other states, results were only provided that were disaggregated by grade level, subject area, and/or disadvantaged student subgroup (e.g., subgroups defined by race/ethnicity and/or poverty status). In those cases, weighted means were used to combine data from the various subgroups. For example, the calculation of the performance index in Step 1 would first require combining disaggregated reading and mathematics proficiency data by grade level and disadvantaged student subgroup. To create the performance index, grade levels would then be pooled using a weighted average of the number of tested students.

In addition, some states had heavily suppressed values—or reported no values—for the numbers tested in reading and mathematics. For example, Illinois, Kansas, and Utah provided no data on numbers tested. In these cases, the reading and mathematics tests were weighted by numbers tested at higher aggregations (e.g., at the district or state level).

See Appendix A for more detailed information on the assessments used in this analysis, the ranges of potential performance index values, and the various proficiency levels by state.

Substep 1.2: Calculate the Percentage of Economically Disadvantaged Students

The percentage of students in poverty was calculated with enrollment values retrieved from the CCD’s eligibility counts for free or reduced-price lunch, relative to the total number of students at a school. The weighted mean value of the state was used when poverty values were missing for a school.
Substep 1.3: Regress the Performance Index on the Percentage of Economically Disadvantaged Students

Linear regression was used to determine the state-specific relationship between the school-level performance index and school-level poverty.

Substep 1.4: Use Residuals to Establish the Performance Zone

Using linear regression, residuals—the difference between a high school's expected and its observed performance index values—were used to establish the performance zone around the regression line. The upper and lower boundaries of the performance zone were set to +/-0.33 standard deviation of the residual values. See Appendix B for state-by-state scatterplot graphs showing this relationship and the distribution of high schools.

Substep 1.5: Create the Risk-Adjusted Performance Index

Each high school's residual measured the degree to which the high school differed from its statistically expected performance on reading and mathematics assessments, when controlled for the proportion of economically disadvantaged students. A risk-adjusted performance index was defined as the ratio of each high school's residual to one-third of a standard deviation. Index values of one or greater indicated that the high school performed better than would be statistically expected.

Substep 1.6: Select High Schools That Surpass the Performance Threshold, and Proceed to Step 2

High schools with risk-adjusted performance index values at or above 1 (with the value of 1 corresponding to the upper threshold of the performance zone of one-third of a standard deviation) were considered performing beyond expectations, according to U.S. News, and advanced to Step 2.

For example, as shown in Exhibit 5, 278 high schools in an example state (Florida) performed at or above the upper threshold of the performance zone, after controlling for the proportion of economically disadvantaged students, and progressed to Step 2. These schools had a value of 1 or higher on the risk-adjusted performance index. The performance index value needed by a high school to pass Step 1 is higher for high schools with a lower proportion of economically disadvantaged students than for high schools with a higher proportion of economically disadvantaged students.

In addition to the risk-adjusted performance index values, a new process was added to Substep 1.6 for the 2017 rankings: an absolute performance adjustment was applied that enabled schools in the top 10% of their state's PI distribution to pass step 1 automatically. By complementary logic, schools in the bottom 10% of their state's PI distribution were not allowed to pass step 1. This adjustment to the Step 1 passing logic rewards schools for exceptionally high performance at any poverty level, while preventing schools with exceptionally low performance from being ranked.
Step 2 identified high schools in which disadvantaged students—defined as Black/African American, Hispanic/Latino, or economically disadvantaged as determined by state criteria (often defined as students eligible for free or reduced-price lunch through the National School Lunch Program)—had combined reading and mathematics proficiency levels that were at least equal to the state’s average reading and mathematics proficiency levels for all disadvantaged students. The purpose of Step 2 was to make sure that high schools progressing to later steps successfully educated all students, regardless of their socioeconomic or racial/ethnic backgrounds.

Substep 2.1: Calculate the Combined Reading and Mathematics Proficiency (RaMP) Rate for Disadvantaged Student Subgroups for Each High School

The first task in this process was identifying disadvantaged student subgroups in each of the high schools that passed Step 1. These student subgroups included Black/African American students,
Hispanic/Latino students, and economically disadvantaged students (as identified by the state). After the subgroups were identified, the aggregate school-wide reading and mathematics proficiency (RaMP) rate was calculated for the disadvantaged student subgroups, which weighted each of the three subgroups by their relative size to create a single weighted proficiency rate. In other words, the RaMP rate is a weighted average of the percentage of students for each group at or above the proficient level.

Counts of the numbers of students tested in each subgroup were used to weight the assessment results in computing the RaMP rate. If a subgroup was missing numbers tested in the assessment data, CCD enrollment data were used to impute the numbers tested and therefore assign appropriate relative weights, with the total free and reduced-price lunch CCD counts treated as the source for numbers of economically disadvantaged tested. Specifically, CCD subgroup enrollment counts were used to calculate proportions of students in each subgroup within the high school. These proportions were then multiplied by the total number of students tested in the school to generate an estimated number of students tested in each subgroup, which would then be used in the RaMP calculations as explained below.

The example in Exhibit 6 illustrates how a RaMP rate is calculated. In this example, each of the subgroups completed state tests in reading and mathematics. A weighted average percentage of students scoring at or above proficient has been computed. The exact formula for computing the RaMP index for this sample school is provided below Exhibit 6.

Exhibit 6. Example of Calculating the Reading and Mathematics Proficiency Rate for One School

<table>
<thead>
<tr>
<th>Group</th>
<th>Subject</th>
<th>Number Tested</th>
<th>% Below Proficient</th>
<th>% Approaching Proficient</th>
<th>% Proficient</th>
<th>% Above Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black/African American</td>
<td>Reading</td>
<td>120</td>
<td>5</td>
<td>10</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>145</td>
<td>7</td>
<td>8</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>Reading</td>
<td>130</td>
<td>4</td>
<td>11</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>135</td>
<td>5</td>
<td>10</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>Economically Disadvantaged</td>
<td>Reading</td>
<td>200</td>
<td>9</td>
<td>16</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>190</td>
<td>9</td>
<td>6</td>
<td>65</td>
<td>20</td>
</tr>
</tbody>
</table>

1 Numbers tested either provided by state assessment data or estimated from proportion of the student body in each subgroup (obtained from the CCD) multiplied by total number tested in the school.

\[
\text{RaMP} = \frac{(55+30)^{120} + (65+20)^{145} + (55+30)^{130} + (55+30)^{135} + (65+15)^{200} + (65+20)^{190}} {120 + 145 + 130 + 135 + 200 + 190} = 82.56
\]

Substep 2.2: Calculate the State Average RaMP Rate for Disadvantaged Student Subgroups

A weighted state average for the disadvantaged student subgroups was calculated using student subgroup performance across all high schools in the state. To create the state average RaMP rate, RaMP values were averaged across all high schools in the state, weighting each school’s RaMP value by the combined size of their disadvantaged student subgroups.

Substep 2.3: Calculate the Proficiency Gap Differential for Disadvantaged Student Subgroups

To calculate the disadvantaged student proficiency gap differential, the high school-specific RaMP rate for the disadvantaged student subgroups present in the school was compared with the state average RaMP rate for disadvantaged student subgroups. Values greater than or equal to zero
indicated that a high school’s disadvantaged student subgroups outperformed the state average RaMP rate or equaled it. Values lower than zero meant that a high school’s disadvantaged student subgroups performed worse than the state average RaMP rate.

Substep 2.4: Select High Schools That Do as Well as or Better Than the State Average RaMP Rate, and Proceed to Step 3

High schools with disadvantaged student subgroups that performed as well as or better than the state average RaMP rate advanced to Step 3. That is, all high schools that had a value of 0 or higher for the disadvantaged student proficiency gap differential passed Step 2. As with earlier versions of the “Best High Schools” rankings, high schools that passed Step 1 and did not have disadvantaged student subgroups automatically moved to Step 3. See Exhibit 7 for an illustrative example.

Exhibit 7. Example of School Performance of Disadvantaged Student Subgroups on State Assessments for Three Schools

<table>
<thead>
<tr>
<th>School</th>
<th>High School’s State Test Proficiency Rate for Disadvantaged Student Subgroups</th>
<th>State Average RaMP Rate for Disadvantaged Student Subgroups</th>
<th>Proficiency Gap Differential for Disadvantaged Student Subgroups</th>
<th>Continue to Step 3?</th>
</tr>
</thead>
<tbody>
<tr>
<td>School A</td>
<td>90.1</td>
<td>66.8</td>
<td>23.3</td>
<td>Yes. Disadvantaged student subgroups in School A performed better than the state average RaMP rate for disadvantaged student subgroups.</td>
</tr>
<tr>
<td>School B</td>
<td>—</td>
<td>66.8</td>
<td>—</td>
<td>Yes. School B passed Step 1, and there were no data to disqualify it in Step 2. School B had no student subgroups meeting the required minimum size.</td>
</tr>
<tr>
<td>School C</td>
<td>65.9</td>
<td>66.8</td>
<td>–0.9</td>
<td>No. Disadvantaged student subgroups in School C performed worse than the state average RaMP rate for disadvantaged student subgroups.</td>
</tr>
</tbody>
</table>

— Not applicable.
Step 3: Identify High Schools That Met A Basic Graduation Rate Threshold

High schools’ graduation rates were collected from states along with assessment data. Although there is some variation in how states calculate graduation rates, the foundation of all states’ graduation rate calculations is the averaged freshman graduation rate (AFGR), which reports the percentage of first-time ninth-graders who were awarded diplomas four years later. For the 2017 rankings, the graduation rate corresponds to the 2015 graduation cohort who would have entered ninth grade in 2011–12 school year.

High schools were only allowed to pass Step 3 if their rounded graduation rate was 75% or greater (i.e., 74.5% if the state did not report whole numbers). Schools without a graduation rate value were allowed to pass Step 3 as well, to account for varying state rules about which high schools a graduation rate is calculated for (and which, therefore, the school has limited control over). The 75% rate was chosen as a reasonably high, but not unduly strict, value between a low threshold based on the Every Student Succeeds Act (ESSA), which stipulates that states are required to provide additional resources to schools whose graduation rates are equal to or lower than 67%, and the national average for 2014-15, which was reported as 83% (National Center for Education Statistics).4 The 75% threshold serves as a basic criterion that ensures that ranked schools do not struggle to graduate their students.

Step 4: Identify High Schools That Performed Best in Providing Students With Access to Challenging College-Level Coursework

Step 4 of the analysis measured the extent to which students were prepared for college-level work. The college readiness index (CRI)—created for the “Best High Schools” rankings—accounted for 12th-grade student participation in and performance on AP examinations. The CRI was used to determine which high schools passed Step 4 to become silver-medal high schools, and also was used to rank high schools across states to distinguish the gold-medal high schools from silver medalists.

Participation in Step 4 required that at least 10 students were administered at least one AP examination and that a high school have at least 15 students in grade 12. If a high school did not meet these criteria, the high school did not participate in Step 4 even if it had passed Steps 1, 2, and 3.

Substep 4.1: Calculate Student Participation in AP Examinations for Each High School

An AP participation rate was created for each high school by calculating the percentage of 12th graders who took at least one AP examination at some point during high school.

Substep 4.2: Calculate Student Performance on AP Examinations for Each High School

A quality-adjusted AP participation rate was created for each high school by calculating the percentage of 12th graders who passed at least one AP examination at some point during high school. Passing rates for this analysis were based on students achieving a score of 3 or higher on AP examinations.

Substep 4.3 Calculate the CRI for Each High School

As indicated in Exhibit 8, the CRI was calculated by combining the AP participation rate (weighted 25 percent) and the quality-adjusted AP participation rate (weighted 75 percent). The CRI is designed to measure both access to college-level material (participation) and the ability to master this material (performance).

Exhibit 8. Calculation of the College Readiness Index (CRI)

\[
\text{CRI} = \frac{\text{AP Participation Rate}}{\text{Number of 12th graders}} + \frac{\text{Quality-Adjusted AP Participation Rate}}{\text{Number of 12th graders}}
\]

The CRI measures both the breadth and depth of the college-level curriculum in high schools. The purpose of the CRI is to avoid creating an incentive for high schools to improve their ranking by offering more AP courses and examinations, regardless of whether their students are prepared to succeed in them.

Substep 4.4: Calculate the National Median CRI to Select High Schools to Be Ranked

The threshold for the CRI was set at the median of all CRI values—which, in this year’s analysis, was 20.91. That is, half the sample for which AP data were available had CRI values higher than this value. High schools that passed Step 1, Step 2, and Step 3, participated in AP programs, and were at or above this median benchmark were eligible for silver or gold medals.

Substep 4.5: Rank High Schools and Assign Medals

High schools were awarded bronze medals if they passed Step 1, Step 2, and Step 3 and either (1) participated in AP programs but did not meet the CRI threshold of 20.91 or (2) did not participate in AP programs. High schools that passed Step 1, Step 2, and Step 3 and met or exceeded the CRI threshold were awarded a silver or a gold medal.
Though 20,487 high schools initially were considered for the rankings, 1,155 schools did not have sufficient data with which to calculate a performance index. Of the 19,332 eligible high schools, 3,432 schools (17.8 percent of eligible U.S. high schools) were awarded bronze medals, 2,109 schools (10.9 percent) were awarded silver medals, and 500 schools (2.6 percent) were awarded gold medals. All gold-medal high schools in this year’s rankings had a CRI of 56.00 or higher. See Exhibit 9.

Exhibit 9. High School Performance Pyramid

In cases in which gold- or silver-medal high schools were tied on their CRI, secondary rankings were calculated to create tiebreakers. The first tiebreaker was an index of the breadth of student participation in and success on AP exams across seven subject areas (computed by the College Board and provided to U.S. News). Schools whose students took at least one AP exam in multiple subject areas and whose students scored a 3 or higher across multiple subject areas performed better on this measure. The second tiebreaker was the number of examinations per test-taker, which was calculated as the average number of tests taken per student among students who took at least one test. The third tiebreaker was the percentage of students taking and passing at least one examination. Only the first and second tiebreakers were needed to break ties in the 2017 rankings.
Thresholds to Identify “Best High Schools”

For the 2016 rankings, a new step was added to the rankings methodology to account for graduation rates. High schools with a graduation rate of 68% or greater passed the new Step 3 and became eligible for a medal or ranking. The 2017 rankings incorporated a change to the graduation rate threshold used in Step 3: schools passed Step 3 if their graduation rate was 75% or above.

For the 2015 rankings, a new threshold was applied in Step 1 to include more high schools. The rankings from 2012 to 2014 used a threshold of 0.5 standard deviations for the performance zone in Step 1. In 2015, the threshold was reduced to 0.33 standard deviations. The rankings prior to the 2012 release used a threshold of 1.0 standard deviation for the performance zone in Step 1. In addition, the rankings prior to 2012 used a threshold of 20 for the CRI in Step 3 (now Step 4) to identify silver-medal schools. The 2013 through 2015 rankings used a CRI threshold based on the national median of all calculated indexes.

Starting in 2012, the “Best High Schools” rankings identified the top 500 high schools as gold-medal high schools—instead of the top 100 high schools, as recognized in previous versions. In addition, gold- and silver-medal schools were ranked; previous versions ranked only schools receiving gold medals.

The “Best High Schools” rankings no longer separately acknowledge high schools that did not pass Step 1 and Step 2 but had equally high values for the CRI as the top-ranked gold-medal high schools. (These high schools formerly had received “honorable mention.”)

Data Notes

Changes in Assessment Data. Between 2013–14 and 2014–15, a number of states made changes to either their assessments, proficiency standards, and/or reporting practices which may have affected school ranking results this year compared to last year. In 2014–15, 30 states implemented new Common Core-aligned assessments that measure students’ college and career readiness (13 states implemented Smarter Balanced, nine implemented Partnership for Assessment of Readiness for College and Careers [PARCC], and seven implemented state-specific assessments based on Common Core standards). Many of the states that implemented new tests in 2014–15 had changes made to the
grade levels tested, courses areas tested, or proficiency levels used. See Exhibit 10 for the full list.

Exhibit 10. List of States with New Assessments in 2014-15, and the Assessment Administered

<table>
<thead>
<tr>
<th>State</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>Alaska Measures of Progress (AMP)</td>
</tr>
<tr>
<td>Arizona</td>
<td>Arizona's Measurement of Educational Readiness to Inform Teaching (AzMERIT)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>PARCC</td>
</tr>
<tr>
<td>Colorado</td>
<td>PARCC</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Delaware</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>PARCC</td>
</tr>
<tr>
<td>Florida</td>
<td>Florida Standards Assessment (ELA) and Mathematics EOCs</td>
</tr>
<tr>
<td>Georgia</td>
<td>Georgia Milestones Assessment System (ELA and math EOCs)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Idaho</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Illinois</td>
<td>PARCC</td>
</tr>
<tr>
<td>Kansas</td>
<td>Kansas State Assessment (KSA)</td>
</tr>
<tr>
<td>Maine</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Maryland</td>
<td>PARCC</td>
</tr>
<tr>
<td>Michigan</td>
<td>Michigan Student Test of Educational Progress (M-STEP)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>PARCC</td>
</tr>
<tr>
<td>Montana</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>New Jersey</td>
<td>PARCC</td>
</tr>
<tr>
<td>New Mexico</td>
<td>PARCC</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Oregon</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>PARCC</td>
</tr>
<tr>
<td>South Carolina</td>
<td>End of Course Examination Program (EOCEP)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Vermont</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Washington</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Smarter Balanced</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>ACT</td>
</tr>
</tbody>
</table>

NOTE: PARCC = Partnership for Assessment of Readiness for College and Careers

Sixteen of the states with new assessments tested different grade levels than in the previous year. For example, eight of the nine states that implemented the PARCC assessment tested more grade levels than previously (Arkansas, Colorado, District of Columbia, Illinois, Mississippi, New Jersey, New Mexico, and Rhode Island). Of the 13 states that implemented Smarter Balanced assessments, one state tested fewer grade levels (Washington) and three changed from testing 10th-graders to testing 11th-graders (Connecticut, Hawaii, and Montana).

Fourteen of the states that implemented new tests had different proficiency levels used in 2014–15. For example, all nine of the states that implemented PARCC assessments increased the number of proficiency levels from three or four levels to five levels.
While Florida did not revamp their existing mathematics assessments or change proficiency standards for 2014–15, the state added an additional end-of-course mathematics assessment (Algebra II).

The 2016 rankings used the “final recommended” proficiency standards for Texas high schools. These are standards that the Texas Education Agency (TEA) identified as the preferred reporting standard for student proficiency. However, TEA has delayed implementing these standards; instead, TEA has reported “phase-in” standards in recent years. For this year’s rankings, the “phase-in 1” performance standards were used, which correspond to the 2014–15 school year.

In order to comply with the Family Education Rights and Privacy Act (FERPA), states typically suppress results for small groups of students. Some schools may not have been included in the ranking process if the state’s suppression practices resulted in too little performance information being available. For example, Washington implemented stricter suppression rules in 2014–15 that resulted in all proficiency level information (counts and percentages) being suppressed for a given record if any of the cells in the record had a count less than 10 or a percentage of less than 5 percent or greater than 95 percent. This change in the suppression rules, combined with many schools having a smaller total student count due to the change in the grade levels tested (discussed above), resulted in more schools in Washington being excluded than in previous years.

States where data suppression appears to have had a large impact on the results included Colorado, Connecticut, Idaho, Maryland, Michigan, Oklahoma, and Washington. In some cases, to provide U.S. News with information about as many schools as possible, states collapsed proficiency categories (or RTI requested collapsed categories) to increase the number of students in a category and avoid having to suppress results. Therefore, the number of proficiency categories indicated in Appendix A for a given state may be lower than the number the state typically reports (e.g., Colorado, Missouri, and Nebraska).

All states reported 2014–15 assessment data for the overall school. However, Mississippi, Montana, and Utah did not have subgroup information for 2014–15; subgroup data from 2013–14 were used. Louisiana did not supply updated subgroup data in time to be included in the analysis. All other data points for these states, including state test results for all students, graduation rates, and CCD data used during the rankings process, were from 2014–15. In Delaware, 2014–15 graduation rate data was not available; 2013–14 graduation rates were used in their place.

Schools without a Performance Index. To be considered for the rankings, a high school needed available assessment data for at least one subtest used in the state-specific analyses for Step 1 and Step 2. Six percent of high schools (1,155) in the initial group of schools considered for the rankings did not have enough data to calculate a performance index and were thus removed from the analysis. Some of the reasons for this exclusion were missing state assessment data, missing state assessment data for the “all students” category, missing state assessment data for relevant subtests, missing records in the CCD, and suppressed state assessment data for all or some proficiency levels.

Data could have been suppressed for various reasons, including to protect identification of students, protect identification of students in particular subgroups, and hide unreportable data. It is possible that in some of these cases, the data were redacted because a high percentage of students in the school achieved the same standard (e.g., more than 90 percent of students scored above proficient) and the data were suppressed from public view. States where less than 85 percent of schools had a performance index were Colorado, Connecticut, Idaho, Missouri, Montana, Oklahoma, Utah, and Washington. The numbers of schools without a performance index are noted at the bottom of each state-by-state scatterplot in Appendix B.
Free and Reduced-Price Lunch Eligibility. Technical documentation for the CCD (https://nces.ed.gov/ccd/xls/2014-15_CCD_Companion_SCH_Free_Lunch.xlsx) notes changes in the number of students eligible for free and reduced-price lunch (FRPL) from 2013–14 to 2014–15. In a number of states, the shift to Community Eligibility—in which the entire school is deemed eligible for free lunch, in order to reduce the stigma associated with free lunch program participation—resulted in shifts in FRPL counts. Typically, though not always, this means a reduction in the number of reduced-price eligible students and increase in the number of free lunch-eligible students. The states with noted changes are Alabama, Alaska, Arizona, Arkansas, Florida, Idaho, Louisiana, Massachusetts, North Carolina, Pennsylvania, and West Virginia.

Use of Advanced Placement Data. States provided assent to use aggregated Advanced Placement test participation data from The College Board. In providing assent to use AP data, some states requested suppression of particular AP data values. These states were Colorado, Florida, Idaho, New York, and Tennessee.
References

Technical Appendices
Appendix A

State Assessments and Performance Levels Used to Calculate the Performance Index and Disadvantaged Student Subgroup Proficiency Rates (2014–15)

The following table shows the state assessments (reading and mathematics) used to calculate the performance index and disadvantaged student subgroup proficiency rates. It also shows the range of potential performance index values and the levels reported below proficient and at or above proficient. The proficient level was assigned a value of 1.0 points, with 1.5 points for one level above proficient and 2.0 points for two levels above proficient. One level below proficient was assigned a value of 0.5 points. Two and three levels below proficient received a value of 0. When only one level was reported as below proficient, that level also received a value of 0.

<table>
<thead>
<tr>
<th>State</th>
<th>Assessment Name</th>
<th>Range of Potential Performance Index Values</th>
<th>3 Levels Below Proficient (0.0)</th>
<th>2 Levels Below Proficient (0.0)</th>
<th>1 Level Below Proficient (0.5)</th>
<th>Proficient (1.0)</th>
<th>1 Level Above Proficient (1.5)</th>
<th>2 Levels Above Proficient (2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>ACT Plan</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Alaska</td>
<td>Alaska Measures of Progress (AMP)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Arizona</td>
<td>Arizona’s Measurement of Educational Readiness to Inform Teaching (AzMERIT)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Arkansas</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>California</td>
<td>California High School Exit Exam (CAHSEE)</td>
<td>0–100</td>
<td>✓†</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–100</td>
<td>✓†</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*Denotes changes in the number of subjects assessed, a switch to new assessment(s), and/or differences in how data were reported by the state compared to 2013–14.

** Denotes that new assessment data for subgroups were not available for 2014–15; subgroup data results from 2013–14 were used in their place.

† As the only proficiency level below proficient, this level was assigned a weight of zero in the calculation of the performance index.
<table>
<thead>
<tr>
<th>State</th>
<th>Assessment Name</th>
<th>Range of Potential Performance Index Values</th>
<th>3 Levels Below Proficient (0.0)</th>
<th>2 Levels Below Proficient (0.5)</th>
<th>1 Level Below Proficient (1.0)</th>
<th>1 Level Above Proficient (1.5)</th>
<th>2 Levels Above Proficient (2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware¹</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Florida</td>
<td>Florida Standards Assessment (ELA) and Mathematics EOCs**</td>
<td>0–200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>Georgia Milestones Assessment System (ELA and Mathematics EOCs)*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Idaho</td>
<td>Idaho Standards Achievement Tests (Smarter Balanced)*</td>
<td>0–150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Indiana</td>
<td>End-of-Course Assessments (ECAs)</td>
<td>0–150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>Iowa Assessments</td>
<td>0–150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>Kansas State Assessment (KSA)*</td>
<td>0–200</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Kentucky Performance Rating for Educational Progress (K-PREP) EOCs</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Louisiana</td>
<td>EOCs**</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Maine</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Maryland</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Massachusetts Comprehensive Assessment System (MCAS)</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Michigan</td>
<td>Michigan Student Test of Educational Progress (M-STEP)*</td>
<td>0–150</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

* Denotes changes in the number of subjects assessed, a switch to new assessment(s), and/or differences in how data were reported by the state compared to 2013–14.

** Denotes that new assessment data for subgroups were not available for 2014–15; subgroup data results from 2013–14 were used in their place.

† As the only proficiency level below proficient, this level was assigned a weight of zero in the calculation of the performance index.

¹ For Delaware, graduation rate data from 2014–15 were not available; graduation rates from 2013–14 were used in their place.
<table>
<thead>
<tr>
<th>State</th>
<th>Assessment Name</th>
<th>Range of Potential Performance Index Values</th>
<th>3 Levels Below Proficient (0.0)</th>
<th>2 Levels Below Proficient (0.5)</th>
<th>1 Level Below Proficient (1.0)</th>
<th>1 Level Above Proficient (1.5)</th>
<th>2 Levels Above Proficient (2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minnesota</td>
<td>Minnesota Comprehensive Assessments Series III (MCA-III)</td>
<td>0–150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC),*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Missouri</td>
<td>Missouri Assessment Program (MAP) EOCs</td>
<td>0–100</td>
<td></td>
<td></td>
<td>✓†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>Smarter Balanced Assessment*,**</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Nevada State Accountability (NeSA)</td>
<td>0–100</td>
<td></td>
<td></td>
<td>✓†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>Nevada High School Proficiency Examination (HSPE)</td>
<td>0–150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>New Mexico</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>New York</td>
<td>Regents Examinations</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>North Carolina</td>
<td>End-of-Course (EOC) Tests</td>
<td>0–200</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>North Dakota</td>
<td>North Dakota State Assessment (Smarter Balanced)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ohio²</td>
<td>Ohio Graduation Test (OGT)</td>
<td>0–200</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Oklahoma Core Curriculum Tests (OCCT) End of Instruction (EOI) Assessments</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oregon</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Keystone End-of-Course Exams</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Partnership for Assessment of Readiness for College and Careers (PARCC)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>South Carolina</td>
<td>End of Course Examination Program (EOCEP)*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Denotes changes in the number of subjects assessed, a switch to new assessment(s), and/or differences in how data were reported by the state compared to 2013–14.

** Denotes that new assessment data for subgroups were not available for 2014–15; subgroup data results from 2013–14 were used in their place.

† As the only proficiency level below proficient, this level was assigned a weight of zero in the calculation of the performance index.

²Ohio reported three levels above proficient: “accelerated,” “advanced,” and “advanced plus;” the upper two levels were combined to create the level of “2 levels above proficient.”
<table>
<thead>
<tr>
<th>State</th>
<th>Assessment Name</th>
<th>Range of Potential Performance Index Values</th>
<th>3 Levels Below Proficient (0.0)</th>
<th>2 Levels Below Proficient (0.0)</th>
<th>1 Level Below Proficient (0.5)</th>
<th>Proficient (1.0)</th>
<th>1 Level Above Proficient (1.5)</th>
<th>2 Levels Above Proficient (2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Dakota</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Tennessee Comprehensive Assessment Program (TCAP) EOC</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Texas</td>
<td>State of Texas Assessments of Academic Readiness (STAAR) EOC Assessments</td>
<td>0–150</td>
<td>✓†</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Utah</td>
<td>Student Assessment of Growth and Excellence (SAGE)**</td>
<td>0–100</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vermont</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Virginia</td>
<td>Standards of Learning (SOL) EOCs</td>
<td>0–150</td>
<td>✓†</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Washington</td>
<td>Smarter Balanced Assessment*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>West Virginia</td>
<td>West Virginia General Summative Assessment (Smarter Balanced)**</td>
<td>0–200</td>
<td>✓†</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>ACT*</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wyoming</td>
<td>ACT</td>
<td>0–150</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*Denotes changes in the number of subjects assessed, a switch to new assessment(s), and/or differences in how data were reported by the state compared to 2013–14.

** Denotes that new assessment data for subgroups were not available for 2014–15; subgroup data results from 2013–14 were used in their place.

† As the only proficiency level below proficient, this level was assigned a weight of zero in the calculation of the performance index.
Appendix B

State Assessment Regression Analyses for the Performance Index

The following pages contain state-by-state scatterplot graphs showing the relationship between performance index (as measured by performance on state assessments in reading and mathematics) and poverty rate. High schools above the performance zone (the green band) are deemed to be performing above expectations in their state for their poverty levels. These high schools passed Step 1 of the analyses.

The relationship between performance index and poverty rate was negative across all states. In other words, in each state, the performance index decreased as the level of poverty increased. Schools for which a performance index could not be calculated from available data were not included in the analysis. The number of schools for which this is the case appears below each state specific table.
Alabama

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) 360
Number of high schools performing above expectations in Step 1 156
Percentage of schools performing above expectations in Step 1 43%

In Alabama, 2 schools did not have enough data to calculate a performance index and were not included in the analysis.
Alaska

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) 111
Number of high schools performing above expectations in Step 1 38
Percentage of schools performing above expectations in Step 1 34%

In Alaska, 4 schools did not have enough data to calculate a performance index and were not included in the analysis.
Arizona

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 470
Number of high schools performing above expectations in Step 1 151

Percentage of schools performing above expectations in Step 1 32%

In Arizona, 4 schools did not have enough data to calculate a performance index and were not included in the analysis.
Arkansas

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 279
Number of high schools performing above expectations in Step 1 91
Percentage of schools performing above expectations in Step 1 33%
Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 2,126
Number of high schools performing above expectations in Step 1 974
Percentage of schools performing above expectations in Step 1 46%
Colorado

Step 1 Analysis

Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 317

Number of high schools performing above expectations in Step 1 100

Percentage of schools performing above expectations in Step 1 32%

In Colorado, 97 schools did not have enough data to calculate a performance index and were not included in the analysis.
Connecticut

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 136
Number of high schools performing above expectations in Step 1 52

Percentage of schools performing above expectations in Step 1 38%

In Connecticut, 93 schools did not have enough data to calculate a performance index and were not included in the analysis.
Delaware

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 34
Number of high schools performing above expectations in Step 1.............................14
Percentage of schools performing above expectations in Step 1 41%
District of Columbia

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 34
Number of high schools performing above expectations in Step 1 9
Percentage of schools performing above expectations in Step 1 26%

In District of Columbia, 3 schools did not have enough data to calculate a performance index and were not included in the analysis.
Florida

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 722
Number of high schools performing above expectations in Step 1 278
Percentage of schools performing above expectations in Step 1 39%

In Florida, 31 schools did not have enough data to calculate a performance index and were not included in the analysis.
Georgia

Step 1 Analysis
Actual Performance Versus Expected Performance

High Schools Performance Zone 2014–2015

Total number analyzed statewide (calculated PI) ... x
Number of high schools performing above expectations in Step 1 x

Percentage of schools performing above expectations in Step 1 x%
Hawaii

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 53
Number of high schools performing above expectations in Step 1............................18
Percentage of schools performing above expectations in Step 1 34%

In Hawaii, 3 schools did not have enough data to calculate a performance index and were not included in the analysis.
Idaho

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 66
Number of high schools performing above expectations in Step 1.......................... 22

Percentage of schools performing above expectations in Step 1 33%

In Idaho, 121 schools did not have enough data to calculate a performance index and were not included in the analysis.
Illinois

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 655
Number of high schools performing above expectations in Step 1 227
Percentage of schools performing above expectations in Step 1 35%
Indiana

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 410
Number of high schools performing above expectations in Step 1 154

Percentage of schools performing above expectations in Step 1 38%
Iowa

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 338
Number of high schools performing above expectations in Step 1 134

Percentage of schools performing above expectations in Step 1 40%

In Iowa, 7 schools did not have enough data to calculate a performance index and were not included in the analysis.
Kansas

Step 1 Analysis
Actual Performance Versus Expected Performance

High Schools Performance Zone 2014–2015

Performance Index

Percentage of Economically Disadvantaged Students

- Performance zone
- Above expected
- Average
- Below expected

Total number analyzed statewide (calculated PI) ... 313
Number of high schools performing above expectations in Step 1.................. 111
Percentage of schools performing above expectations in Step 1 35%
Kentucky

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 270
Number of high schools performing above expectations in Step 1 108

Percentage of schools performing above expectations in Step 1 40%

In Kentucky, 15 schools did not have enough data to calculate a performance index and were not included in the analysis.
Louisiana

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 332
Number of high schools performing above expectations in Step 1 132
Percentage of schools performing above expectations in Step 1 40%

In Louisiana, 5 schools did not have enough data to calculate a performance index and were not included in the analysis.
Maine

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 111
Number of high schools performing above expectations in Step 1.............................. 38
Percentage of schools performing above expectations in Step 1 34%

In Maine, 8 schools did not have enough data to calculate a performance index and were not included in the analysis.
Maryland

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 204
Number of high schools performing above expectations in Step 1............................ 69
Percentage of schools performing above expectations in Step 1 34%
Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 354
Number of high schools performing above expectations in Step 1 113
Percentage of schools performing above expectations in Step 1 32%
Michigan

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 831
Number of high schools performing above expectations in Step 1 308

Percentage of schools performing above expectations in Step 1 37%

In Michigan, 117 schools did not have enough data to calculate a performance index and were not included in the analysis.
Minnesota

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 517
Number of high schools performing above expectations in Step 1.......................... 206
Percentage of schools performing above expectations in Step 1 40%

In Minnesota, 42 schools did not have enough data to calculate a performance index and were not included in the analysis.
Mississippi

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 236
Number of high schools performing above expectations in Step 1.......................... 89

Percentage of schools performing above expectations in Step 1 38%

In Mississippi, 1 schools did not have enough data to calculate a performance index and were not included in the analysis.
Missouri

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 410
Number of high schools performing above expectations in Step 1 150
Percentage of schools performing above expectations in Step 1 37%

In Missouri, 91 schools did not have enough data to calculate a performance index and were not included in the analysis.
Montana

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 84
Number of high schools performing above expectations in Step 1.............................. 34
Percentage of schools performing above expectations in Step 1 40%

In Montana, 33 schools did not have enough data to calculate a performance index and were not included in the analysis.
Nebraska

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 238
Number of high schools performing above expectations in Step 1 81

Percentage of schools performing above expectations in Step 1 34%

In Nebraska, 9 schools did not have enough data to calculate a performance index and were not included in the analysis.
Nevada

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 111
Number of high schools performing above expectations in Step 1 35

Percentage of schools performing above expectations in Step 1 32%

In Nevada, 16 schools did not have enough data to calculate a performance index and were not included in the analysis.
New Hampshire

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 82
Number of high schools performing above expectations in Step 1 26

Percentage of schools performing above expectations in Step 1 32%

In New Hampshire, 7 schools did not have enough data to calculate a performance index and were not included in the analysis.
New Jersey

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) 412
Number of high schools performing above expectations in Step 1 113
Percentage of schools performing above expectations in Step 1 27%

In New Jersey, 5 schools did not have enough data to calculate a performance index and were not included in the analysis.
New Mexico

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 191
Number of high schools performing above expectations in Step 1 69

Percentage of schools performing above expectations in Step 1 36%

In New Mexico, 2 schools did not have enough data to calculate a performance index and were not included in the analysis.
New York

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 1,252
Number of high schools performing above expectations in Step 1 470

Percentage of schools performing above expectations in Step 1 38%

In New York, 7 schools did not have enough data to calculate a performance index and were not included in the analysis.
North Carolina

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 572
Number of high schools performing above expectations in Step 1 164

Percentage of schools performing above expectations in Step 1 29%

In North Carolina, 5 schools did not have enough data to calculate a performance index and were not included in the analysis.
North Dakota

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 109
Number of high schools performing above expectations in Step 1.............................. 42
Percentage of schools performing above expectations in Step 1 39%

In North Dakota, 17 schools did not have enough data to calculate a performance index and were not included in the analysis.
Ohio

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 866
Number of high schools performing above expectations in Step 1 395
Percentage of schools performing above expectations in Step 1 46%
Oklahoma

Step 1 Analysis

Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 251
Number of high schools performing above expectations in Step 1 103

Percentage of schools performing above expectations in Step 1 41%

In Oklahoma, 197 schools did not have enough data to calculate a performance index and were not included in the analysis.
Oregon

Step 1 Analysis
Actual Performance Versus Expected Performance

![Graph showing performance index vs. percentage of economically disadvantaged students]

Total number analyzed statewide (calculated PI) .. 290
Number of high schools performing above expectations in Step 1 115

Percentage of schools performing above expectations in Step 1 40%

In Oregon, 7 schools did not have enough data to calculate a performance index and were not included in the analysis.
Pennsylvania

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 675
Number of high schools performing above expectations in Step 1 253
Percentage of schools performing above expectations in Step 1 37%
Rhode Island

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 57
Number of high schools performing above expectations in Step 1............................16
Percentage of schools performing above expectations in Step 1 28%
South Carolina

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 228
Number of high schools performing above expectations in Step 1 83

Percentage of schools performing above expectations in Step 1 36%
South Dakota

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 130
Number of high schools performing above expectations in Step 1 46
Percentage of schools performing above expectations in Step 1 35%

In South Dakota, 12 schools did not have enough data to calculate a performance index and were not included in the analysis.
Tennessee

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 358
Number of high schools performing above expectations in Step 1............................... 138

Percentage of schools performing above expectations in Step 1 39%

In Tennessee, 8 schools did not have enough data to calculate a performance index and were not included in the analysis.
Texas

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 1,740
Number of high schools performing above expectations in Step 1 646
Percentage of schools performing above expectations in Step 1 37%

In Texas, 13 schools did not have enough data to calculate a performance index and were not included in the analysis.
Utah

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 136
Number of high schools performing above expectations in Step 1 41
Percentage of schools performing above expectations in Step 1 30%
In Utah, 36 schools did not have enough data to calculate a performance index and were not included in the analysis.
Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 61
Number of high schools performing above expectations in Step 1 23
Percentage of schools performing above expectations in Step 1 38%
Virginia

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) 320
Number of high schools performing above expectations in Step 1 120
Percentage of schools performing above expectations in Step 1 38%

In Virginia, 2 schools did not have enough data to calculate a performance index and were not included in the analysis.
Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 370
Number of high schools performing above expectations in Step 1................................. 130

Percentage of schools performing above expectations in Step 1 35%

In Washington, 130 schools did not have enough data to calculate a performance index and were not included in the analysis.
West Virginia

Step 1 Analysis
Actual Performance Versus Expected Performance

High Schools Performance Zone 2014–2015

- **Total number analyzed statewide (calculated PI):** 114
- **Number of high schools performing above expectations in Step 1:** 45
- **Percentage of schools performing above expectations in Step 1:** 39%
Wisconsin

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) .. 492
Number of high schools performing above expectations in Step 1 172
Percentage of schools performing above expectations in Step 1 35%
Wyoming

Step 1 Analysis
Actual Performance Versus Expected Performance

Total number analyzed statewide (calculated PI) ... 63
Number of high schools performing above expectations in Step 1 22
Percentage of schools performing above expectations in Step 1 35%

In Wyoming, 5 schools did not have enough data to calculate a performance index and were not included in the analysis.