Constructing Biological Machines

Research has implications for industry, medicine, energy, environment.

SHARE

Center researchers have five projects currently underway. Three of the projects focus on developing machine components and enabling technologies--the methods that will allow the assembly of machines. In addition, the scientists are developing two cellular machines. One of them will be able to sense glucose in the bloodstream and dispense insulin as needed. They also are working on creating millimeter scale biological machines made from polymers and living cells, possibly cardiac or skeletal muscle cells that can identify a chemical toxin, move toward it, and release chemicals to neutralize it. Similarly, another project will release machines that can inspect produce, searching for pathogens, and signal whether they have found any.

Center researchers’ long-term goal is to explore ways to construct robotics from cells. “What would be the advantage of a biological robotic arm? It could remodel itself if its task changes, so it can perform the task better, and can repair itself,” Kamm says. “If I wanted to become a professional tennis player, for example, and I started to train and work out, my arm would remodel itself and perform the task better over time. That’s the idea.”

While the obstacles are still considerable, biological machines may be closer than most people believe. “Our hope is to create several simple biological machines within the next five years,” Kamm says. “And, during that same time period, we also expect that industry will begin to recognize the potential, and initiate its own research and development programs that will speed things along even more.”