Adapting Agriculture to Climate Change

Global field expeditions help farmers adapt to climate change by securing genetic traits of crops.

+ More

ROME—The Global Crop Diversity Trust announced a major global search to systematically find, gather, catalogue, use, and save the wild relatives of wheat, rice, beans, potato, barley, lentils, chickpea, and other essential food crops, in order to help protect global food supplies against the imminent threat of climate change, and strengthen future food security.

The initiative, led by the Global Crop Diversity Trust, working in partnership with national agricultural research institutes, Royal Botanic Gardens, Kew, and the Consultative Group on International Agricultural Research (CGIAR), is the largest one ever undertaken with the tough wild relatives of today's main food crops. These wild plants contain essential traits that could be bred into crops to make them more hardy and versatile in the face of dramatically different climates expected in the coming years. Norway is providing US$50 million towards this important contribution to food security.

"All our crops were originally developed from wild species—that's how farming began," explained Cary Fowler, Executive Director of the Global Crop Diversity Trust. "But they were adapted from the plants best suited to the climates of the past. Climate change means we need to go back to the wild to find those relatives of our crops that can thrive in the climates of the future. We need to glean from them the traits that will enable modern crops to adapt to new, harsher and more demanding situations. And we need to do it while those plants can still be found."

Crop wild relatives make up only a few percent of the world's genebank holdings, yet their contribution to commercial agriculture alone is estimated at more than US$100 billion per year. One example dates back to the 1970s, when an outbreak of grassy stunt virus, which prevents the rice plant from flowering and producing grain, decimated rice harvests across Asia. Scientists from the International Rice Research Institute (IRRI) screened more than 10,000 samples of wild and locally-cultivated rice plants for resistance to the disease and found it in a wild relative, Oryza nivara, growing in India. The gene has been incorporated into most new varieties since the discovery.

"This project represents one of the most concrete steps taken to date to ensure that agriculture, and humanity, adapts to climate change. At a more fundamental level, the project also demonstrates the importance of biodiversity and genetic resources for human survival," said Erik Solheim, Minister of the Environment and International Development of Norway, which is providing the initial budget of US$50 million to fund the work on 23 global food crops: alfalfa, bambara groundnut, banana, barley, bean, fava bean, chickpea, cowpea, finger millet, grass pea, lentil, oat, pea, pearl millet, pigeon pea, potato, rye, rice, sorghum, sunflower, sweet potato, vetch and wheat. The work is scheduled to take 10 years, from determining where to collect, through to having material ready for crop breeding programs.

Although plant breeders have incorporated many traits from the wild relatives of our crops over the years, the plants have never been comprehensively collected or conserved, according to the Global Crop Diversity Trust. As a result, valuable traits are largely unavailable to plant breeders and farmers and many are at risk of being lost forever due to climate change and rapid habitat loss. According to the UK's Royal Botanic Gardens, Kew, a major partner in the project, one-fifth of the world's plants are threatened with extinction.

It is widely understood that, irrespective of the outcomes at the United Nations' climate change conference in Cancún, the coming decades will see ever more challenging conditions for agriculture. The forecasts for declining yields are particularly frightening for the developing world. For example, yields for maize in Southern Africa, a vital crop in a region which already suffers from chronic hunger, are predicted to fall by up to 30 percent within just 20 years. The standard response until now has been that new, hardier varieties of our crops will be required.