Study: It's Hard to Bring Down the Electric Grid

New mathematical model can be used for understanding complex systems, including the power grid.

SHARE

In other words, the physics horse won. Or, as their paper concludes, "evaluating vulnerability in power networks using purely topological metrics can be misleading," and "results from physics-based models are more realistic and generally more useful for infrastructure risk assessment." Score one for gritty reality.

The value of unpredictability

An important implication of Hines's work, funded by the National Science Foundation, is that electric grid is probably more secure than many people realize—because it is so unpredictable. This, of course, makes it hard to improve its reliability (in another line of research, Hines has explored why the rate of blackouts in the United States hasn't improved in decades), but the up-side of this fact is that it would be hard for a terrorist to bring large parts of the grid down by attacking just one small part.

"Our system is quite robust to small things failing—which is very good," he says, "Even hurricanes have trouble taking out power systems. Hurricanes do cause power system failures, but they don't often take out the whole system."

Blumsack agrees. "Our paper confirms that it would be possible for somebody who wanted to do something disruptive to the power grid to do so," he says. "A lot of the infrastructure is out in the open," which does create vulnerability to planned attack. "But if you wanted to black out half of the U.S., it will be much more difficult than some of these earlier models imply," he says.

"If you were a bad guy, there is no obvious thing to do to take out the power system," Hines says. "What we learned from doing the simulations is that if you take out the biggest substation, with the most flow, you get the biggest failure on average. But there were also a number of cases where, even if you took out the biggest one, you don't get much of a blackout."

"It takes an incredible amount of information," he says, "to really figure out how to make the grid fail."

---

 Follow U.S. News Science on Twitter.